服务热线:13988889999

站内公告:

诚信为本:市场永远在变,诚信永远不变。
目标检测(3):LeNet-5 的 PyTorch 复现(CIFAR10 数据集篇)!

你的位置: 首页 > 杏福新闻

目标检测(3):LeNet-5 的 PyTorch 复现(CIFAR10 数据集篇)!

2024-07-08 14:27:39  点击量:

红色石头的个人网站:

红色石头的个人博客-机器学习、深度学习之路?www.redstonewill.com?www.redstonewill.com?www.redstonewill.com

大家好,我是红色石头!

在上两篇文章:

这可能是神经网络 LeNet-5 最详细的解释了!

我用 PyTorch 复现了 LeNet-5 神经网络(MNIST 手写数据集篇)!

详细介绍了卷积神经网络 LeNet-5 的理论部分和使用 PyTorch 复现 LeNet-5 网络来解决 MNIST 数据集的识别问题。今天我们将使用 Pytorch 来继续实现 LeNet-5 模型,并用它来解决 CIFAR10 数据集的识别。

正文开始!

二、使用LeNet-5网络结构创建CIFAR-10识别分类器

LeNet-5 网络本是用来识别 MNIST 数据集的,下面我们来将 LeNet-5 应用到一个比较复杂的例子,识别 CIFAR-10 数据集。
CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞机( airlane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和 10000 张测试图片。

CIFAR-10 的图片样例如图所示。

2.1 下载并加载数据,并做出一定的预先处理

pipline_train = transforms.Compose([
    #随机旋转图片
    transforms.RandomHorizontalFlip(),
    #将图片尺寸resize到32x32
    transforms.Resize((32,32)),
    #将图片转化为Tensor格式
    transforms.ToTensor(),
    #正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
pipline_test = transforms.Compose([
    #将图片尺寸resize到32x32
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
#下载数据集
train_set = datasets.CIFAR10(root="https://zhuanlan.zhihu.com/p/data/CIFAR10", train=True, download=True, transform=pipline_train)
test_set = datasets.CIFAR10(root="https://zhuanlan.zhihu.com/p/data/CIFAR10", train=False, download=True, transform=pipline_test)
#加载数据集
trainloader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=False)
# 类别信息也是需要我们给定的
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')


2.2 搭建 LeNet-5 神经网络结构,并定义前向传播的过程

LeNet-5 网络上文已经搭建过了,由于 CIFAR10 数据集图像是 RGB 三通道的,因此 LeNet-5 网络 C1 层卷积选择的滤波器需要 3 通道,网络其它结构跟上文都是一样的。

class LeNetRGB(nn.Module):
    def __init__(self):
        super(LeNetRGB, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)   # 3表示输入是3通道
        self.relu = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.maxpool2 = nn.MaxPool2d(2, 2)

        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = x.view(-1, 16*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        output = F.log_softmax(x, dim=1)
        return output


2.3 将定义好的网络结构搭载到 GPU/CPU,并定义优化器

使用 SGD(随机梯度下降)优化,学习率为 0.001,动量为 0.9。

#创建模型,部署gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LeNetRGB().to(device)
#定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)


2.4 定义训练过程

def train_runner(model, device, trainloader, optimizer, epoch):
    #训练模型, 启用 BatchNormalization 和 Dropout, 将BatchNormalization和Dropout置为True
    model.train()
    total = 0
    correct =0.0

    #enumerate迭代已加载的数据集,同时获取数据和数据下标
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        #把模型部署到device上
        inputs, labels = inputs.to(device), labels.to(device)
        #初始化梯度
        optimizer.zero_grad()
        #保存训练结果
        outputs = model(inputs)
        #计算损失和
        #多分类情况通常使用cross_entropy(交叉熵损失函数), 而对于二分类问题, 通常使用sigmod
        loss = F.cross_entropy(outputs, labels)
        #获取最大概率的预测结果
        #dim=1表示返回每一行的最大值对应的列下标
        predict = outputs.argmax(dim=1)
        total += labels.size(0)
        correct += (predict == labels).sum().item()
        #反向传播
        loss.backward()
        #更新参数
        optimizer.step()
        if i % 1000 == 0:
            #loss.item()表示当前loss的数值
            print("Train Epoch{}\	 Loss:{:.6f}, accuracy:{:.6f}%".format(epoch, loss.item(), 100*(correct/total)))
            Loss.append(loss.item())
            Accuracy.append(correct/total)
    return loss.item(), correct/total


2.5 定义测试过程

def test_runner(model, device, testloader):
    #模型验证, 必须要写, 否则只要有输入数据, 即使不训练, 它也会改变权值
    #因为调用eval()将不启用 BatchNormalization 和 Dropout, BatchNormalization和Dropout置为False
    model.eval()
    #统计模型正确率, 设置初始值
    correct = 0.0
    test_loss = 0.0
    total = 0
    #torch.no_grad将不会计算梯度, 也不会进行反向传播
    with torch.no_grad():
        for data, label in testloader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label).item()
            predict = output.argmax(dim=1)
            #计算正确数量
            total += label.size(0)
            correct += (predict == label).sum().item()
        #计算损失值
        print("test_avarage_loss:{:.6f}, accuracy:{:.6f}%".format(test_loss/total, 100*(correct/total)))

2.6 运行

#调用
epoch = 20
Loss = []
Accuracy = []
for epoch in range(1, epoch+1):
    print("start_time",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    loss, acc = train_runner(model, device, trainloader, optimizer, epoch)
    Loss.append(loss)
    Accuracy.append(acc)
    test_runner(model, device, testloader)
    print("end_time: ",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),'\
')

print('Finished Training')
plt.subplot(2,1,1)
plt.plot(Loss)
plt.title('Loss')
plt.show()
plt.subplot(2,1,2)
plt.plot(Accuracy)
plt.title('Accuracy')
plt.show()


经历 20 次 epoch 迭代训练之后:

start_time 2021-11-27 22:29:09
Train Epoch20 Loss: 0.659028, accuracy: 68.750000%
test_avarage_loss: 0.030969, accuracy: 67.760000%
end_time: 2021-11-27 22:29:44

训练集的 loss 曲线和 Accuracy 曲线变化如下:

2.7 保存模型

print(model)
torch.save(model, 'https://zhuanlan.zhihu.com/p/models/model-cifar10.pth') #保存模型


LeNet-5 的模型会 print 出来,并将模型模型命令为 model-cifar10.pth 保存在固定目录下。

LeNetRGB(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (relu): ReLU()
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)


2.8 模型测试

利用刚刚训练的模型进行 CIFAR10 类型图片的测试。

from PIL import Image
import numpy as np

if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('https://zhuanlan.zhihu.com/p/models/model-cifar10.pth') #加载模型
    model = model.to(device)
    model.eval()    #把模型转为test模式
    
    #读取要预测的图片
    # 读取要预测的图片
    img = Image.open("https://zhuanlan.zhihu.com/p/images/test_cifar10.png").convert('RGB') # 读取图像
    #img.show()
    plt.imshow(img) # 显示图片
    plt.axis('off') # 不显示坐标轴
    plt.show()
    
    # 导入图片,图片扩展后为[1,1,32,32]
    trans = transforms.Compose(
        [
            #将图片尺寸resize到32x32
            transforms.Resize((32,32)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    img = trans(img)
    img = img.to(device)
    img = img.unsqueeze(0)  #图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]
    
    # 预测 
    classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    output = model(img)
    prob = F.softmax(output,dim=1) #prob是10个分类的概率
    print("概率:",prob)
    print(predict.item())
    value, predicted = torch.max(output.data, 1)
    predict = output.argmax(dim=1)
    pred_class = classes[predicted.item()]
    print("预测类别:",pred_class)


输出:

概率:tensor([[7.6907e-01, 3.3997e-03, 4.8003e-03, 4.2978e-05, 1.2168e-02, 6.8751e-06, 3.2019e-06, 1.6024e-04, 1.2705e-01, 8.3300e-02]],
grad_fn=<SoftmaxBackward>)
5
预测类别:plane

模型预测结果正确!

以上就是 PyTorch 构建 LeNet-5 卷积神经网络并用它来识别 CIFAR10 数据集的例子。全文的代码都是可以顺利运行的,建议大家自己跑一边。

值得一提的是,针对 MNIST 数据集和 CIFAR10 数据集,最大的不同就是 MNIST 是单通道的,CIFAR10 是三通道的,因此在构建 LeNet-5 网络的时候,C1层需要做不同的设置。至于输入图片尺寸不一样,我们可以使用 transforms.Resize 方法统一缩放到 32x32 的尺寸大小。

所有完整的代码我都放在 GitHub 上,GitHub地址为:

github.com/RedstoneWill


推荐阅读:

我 · 出 · 书 · 了!

深入讨论不同回归模型的基本原理以及差异

从零开始带你一步一步使用YOLOv3训练自己的数据

从零开始带你一步一步使用 YOLOv3 测试自己的数据

330+ 个机器学习模型、库探索工具!Papers With Code 重磅推出!

撒花 | 吴恩达《Machine Learning》精炼笔记完整版发布!

9 大主题!机器学习算法理论面试题大汇总

1700 页,52 万字,6 大主题...

一个网站拿下机器学习优质资源!搜索效率提高 50%

52 个深度学习目标检测模型汇总,论文、源码一应俱全!

《C++ Primer中文版(第5版)》学习笔记与习题完整发布!

重磅发布!吴恩达 AI 完整课程资源超级大汇总!

完结篇 | 吴恩达deeplearning.ai专项课程精炼笔记全部汇总

机器学习笔试100题完全解析

本文首发于公众号:AI有道(ID: redstonewill),欢迎关注!

我梳理了机器学习、深度学习领域完备的资源、教程、工具等,并给你打包好了。想要的童鞋请在公众号【AI有道】后台回复:ML01,即可获取!

首页 |杏福介绍 |杏福展示 |杏福新闻 |杏福注册 |杏福登录 |杏福平台 |杏福APP下载 |杏福代理加盟 |联系我们

13988889999

Copyright © 2012-2018 首页-杏福娱乐-杏福商务站

地址:海南省海口市玉沙路58号电话:0898-88889999手机:13988889999

ICP备案编号:琼ICP备88889999号

微信扫一扫

微信扫一扫

>

平台注册入口